
AD-754 109

RECENT DEVELOPMENTS IN SAIL. AN ALGOL-
BASED LANGUAGE FOR ARTIFICIAL INTELLIGENCE

J. A. Feldman, et al

Stanford University

Prepared for:

Advanced Research Projects Agency
National Science Foundation

November 1972

DISTRIBUTED BY:

mr
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

STANFORD ARTIFICIAL INTELLIGENCE.PROJECT
MEMO AIM-176

STAN-CS-308

o

Q

RECENT DEVELOPMEISTTS IN SAIL

AN ALGOL-BASED LANGUAGE FOR ARTIFICIAL INTELLIGENCE

BY

J.A. FELDMAN

J.R. LOW

D.C. SWINEHART

R.H. TAYLOR

D n r
flF
l.; JAK 22 1973
I i

SUPPORTED BY

ADVANCED RESEARCH PROJECTS AGENCY

ARPA ORDER NO. 457

NOVEMBER 1972

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Department of Commerca
SpringflclH VA 7?M1

cr pubHc roleaio;
TV. -.■ri'-'iticin Tlnlimi»«^

^3
r

STANFORD ARTIFICIAL INTELLIGENCE REPORT
MEMO NO, AIM-176

COMPUTE« SCIENCE DEPARTMENT
REPORT NO, 308

NOVEMBER 1972

Recent developments In SAIL
An ALGOL-baSed Ianguag9 for Artlflofa' Intel

BY

J, A, Fe|dman
J. R. Low

0, C. Swlnehart
R. H, Taylor

IIgence

ABSTRACT

New features added to SAIL, an ALGOL based language for the POP-10.
art discussed, The features Includej procedure variables:
orocesses; coroutines» a limited form of backtracking!
mechanism ' '-" - .
new way

KEYwUKDS

mu11 in I e
an event

im for Inter-Drocess communication; and matching oroceduras, a
of searching thf. LEAP associative data base.

eveiUCiaLI^?il^enc^L!^9ua;es^ ALG0L' SAIL' LE:AP
' multirtaskina, events, associative data structures, backtracking, coroutines,

DrogresslvedeepenlnQ,

The views and conclusions contained In this document are those of ...
authors and should not be Interpreted as necessarily representing th
official policies, either expressed or Imolied, of the Advance
Research Projects Agency, of the National Science Foundation,
the United States Government,

the
e
d

or of

Th's research
Agency of the

was supported In part by the Advanced Research Projects
Office of the Secretary of Defense under contract SD-

183 and in part by t^e National Science Foundation undeP contract GJ-
776,

Reproduced In the united States. Available from the National
Technical I nf ormat t on Ser v I ce, Sor I nqf I e I d, VI f g I n li, 22151. 'Nati0r,a|

~l

INTRODUCTION

Progress In Artificial Inte|||fl9noe has traditionally been
accompanied by advances In soeolal oupoose Droarammlng teohnlaues end
anfluafles, Virtually a|| of this deve | op.uent has been concentrated

In l«n;uages and systems oriented to list prooesslng. As the efforts
- »w^. ,0,'!1

Inte|,1'9?n0i. re3,*r9h,rs "eotn to turn ?rbm purely
symbolic oroblefns toward Inttractlon with the real world, certain
matures of a|sebra]o languages became desirable. There were several
atternpt8<notab|y LiSP2 and FORMULA ALGOL) to oornblne the best
.;t*r ? of both kinds of language. At the sane time, dislgners of

al!8Ml!l? lanBuft09s beean to Include features for non-numerleal
computation, No new general purpose language without some sort of
list processing facility has been suggested for several years. We
have followed a tack somewhat different from either of these In the
deslfln of SAIL and In Its subsequent modifications.

The starting point for the development of SAIL was the recognized
y *.Mr, a lanouage Incorporating symbolic and algebraic
capabilities, primarily for Hand-Eye research, The problems are
somewhat similar to those In Computer Graphjos and one of us had Just
til m

0VSl ! '»"Suage, LEAP [4], for such applications, After an
attempt to honestly evaluate alteenative teohnlcjues, we decided that
the associative processing features of LEAP were the way to go. There
are Important dlfferenees between LEAe and the first SAIL, (ortmarlly
In input-output, string manipulation, and ImDlementatlon), but these
til pnc^l '£? "0t/8l«y«nt here, It Is essentially this system for
ritfi^'V W?,Jh.1

8 distributed by DECUS and Is being used fo
Artificial Intelligence and other research In a number of
laboratories.

I!l!?«u«i9,ha,„SAlL I!* 0Ur nted8 for «"out two yeara before reaulrlno serious change. Then ^ began tc face the DrebleS o? SuttlnS
together a hand-eye system which was much bigger than the available
main memory and whlph did not lend Itself to a static overlay
!JI

U
K #r*!M.0üP Su|ut,on ,nV0lve9 «number of language additions

whicn facilitate the.treatment of Jobs under the time-sharing system
?S ?Kn 2! ^operating seauentlal prop , and has been described
in C5j, The three main additions were t a monitor for user control
and debugging, a shared data facility, and the Introduction of
message procedures, The shared data facility makes use of the second
^iSJT ,5n/*9,,tlrT0' **• pDP-10 to allow Jobs to access a common

l!blJ.„ ditt ar!? |n,a natu',al »"d efficient manner, The message
orocedures are the main mechanism for asynchronous communication and
oontroi between Jobs. A message procedure Is a Procedure In one lob
! -SM.ÜI! !r*Jnvükecl •fPOm r0^»1. Job. Control Information
associated with the Invocation can provide the effect of
subroutines,coroutines,paral lei processes,events, and a variety of
ether discipl ines. These multi-tasking modifI cat Ions to SAIL have

In ppogrammlng non-jjeterti I n I st I c alsorlthras» parallel Drocesses» will
be discuss6^ later in this DaDeP,

In general the state of a SAIL oomoutatlon Includes the current
control environment, the input and cutout which have been reguested.
the contents of the LEAP associative store and thi contents of ell
variables, New SAIL has features which will helo handle the last of
thes« conponents: the contents of variables,

We normally do not want to heve the values of all variables "backad-
up" wh«n we switch between al tepnatlves, One raason !■ that It Is
often useful for one alternative to comtnunjoate certain "sleoes of
Information It has acquired to the other alternatives, This
Information Is usually saved In certain variables. If we backuo those
variables» we lose the Information, Another reason for nut backlng-uo
a|l variables Is that often only a small subset will have meanlno for
more than a single alternative, and It Is very costly to back UD
large amounts of data which may not be relevant for the other
alternatives, Therefore we have Imp leigenttd ways of saivlnö the
values of specific variables and then restorlno them at a late? time,

IhS §Jl$eS?aviinfli.mefih»D^sm is based on two njw. statimentsl REMEMBrP and RESTORE, Each of tnesfc operate on a new SAIi data- typ* called
"context«, A context consists of a set of references to variables at

REMEMBER,

abjes and
their values.

We save the contents of variables by means of REMEMBER statements,

REMEMBER {liJ#aC3]) IN contextl)

This statement would save the values of "\»$ "J"i , "aC3]" In the
context named "contextl", If any of thaae variables had been
Previously saved In "contextl"! tbe o|d values would be lost.

An altamate form of the REMEMBER statement isi

REMEMBER ALL IN contextl;
The current value of each variable which has been rememoered In
"contextl" would reolace the value that was Previously stored there,

The RESTORE statemant also has two forms. The first has an argument-
I ist.

RESTORE (J,aC33> FROM contextll

Thi?. tfould search context! „for the anBumente and^ fllve a* e^rpr
IndTcatTon If any were not "remembered'' within that context. The
values saved for those arouments "rememberedw, would be restored to
the appropriate variables,

!?!: !d raaearchtps to asstmbl« «nd modify |«rg« oollections o
-tth a mlnlitiun. amoUnt 01 attant(0n to «Vstem pfoblti.! f Jobs

A ngiroer cf factors hav« combined
second set of majop modlfTeatlonB
fac
with
abl |

I?- recently to cause us

ntles of the iseond -SAiL-we^itiS iVÜ JUJV**
n a single J0b as they were across Jobs. In addltl

«rti.* «. 5 a?88mbl» 'ffl* oojlections of routines brought us
!!i; ^Mae,?9u9n9 of th9 eop* ePöblims of ArtlfleUl Intelll
what Is the right seouence of actions for car?ytno out a o
!n a particular envlrenmtnt. This strategy problim la
coPular and Is the drMng forge behind

ourfent

.make e
tasking
useful

oni the
to the

gence «
en task
h' vary
recent
of the

ofSS^mi'^89!^0^ !?t9 5?en Intended Programs fcir the eonstructlon and exec
Interaction with the real world, The facilities
otner problems, but we will concentrate
However the lanSuaCe design
oowar of SAIL

of strateil
are being ado!

on th? original
effort was concerned with sxp-.ndl

as a general purpose janouage as opposed to deve
purpose system. One orltloal design constraint was th

arge hidden overheads or appreolab
not making use of them, we be

a specla
features not entail
Performance af programs
found a set of features which meet
additions ar«J backtracking, procedure v
Procedures, and a general multi-tasking facllUy,

I deora Have w
our deslfln goals, The

aria ibles, ma

design
es for
ted to
theme,
no the
loolng
at the
de the
e h«ve
major
tohlng

i

In programming non-det»rmlnl»tlo algorithms, parallel processes, will
be d'sCuased |ater in this paDer,

eonvr« Wi. . i ■••öolat ¥• »tore »nd the contents OT aii
the contents of the UtAP assooia^iv* ■"•"i " h««dl« the last of
variables. New SAlL has features which will halo handle the lasx
thes« conponents« the contents of variables,

rS!n!i!r^ri'^?r!£l!ii!-5^d?rx5¥J^:^!ro«ii/.^ri:5
their values.

We save the contents of variables by means of REMEMBER statements.

REMEMBER UiJ.aC33) IN contaxtll

"I"» "J"' < "aC3]\ inuth9 '"- e n Thl, .Ut.i.nt «ould «». th. "I"",?' t^",; ilU*»W, h.i bJ
s;:j?ou8,r»^ t^nUu-i'tbr^0..,:.:^^ t. ,o.t.
An alternate form of the REMEMBER statement Is»

REMEMBER ALL IN OOnttXtll .
The current value of each variable which has been remernbered In
"contexu' would replace the value that was Previously stored there,

The RESTORE statement also has two forms. The first has an argument-

I ist.

RESTORE (J,aC33) FROM contextXl

ThifeamAdlf,eii;Shw8fStiSa "fr0eUmSh.?.S«gUSt!S?n ^RSt flJSSte5?.9r^S
illlJ! sited for those a?S5ments »remembered«, would be restore,
the appropriate variables.

id to

The other form of the RESTORE atRtement \?t

RESTORE ALL FROM contmil

na'l|dWconjex£*st0re th8 content9 0' »M variables savorl within the

These new features seen to orovlde t*e .most Important features of,
3tate-sav|ng without t^e larae overH«ad Imposed pv ayto^atTc baokuo
of t^e entire state or tncrenentaI atate-savlng as ImoTemented in
some other orogrammjng systems.

,EAP

SAIL contains an assocUtlv« data system
comDutatlons. LEAP Is for syirbollo

runtime subroutines
assoclet Ions,

for hand!Ing

0
a oo
terns»

ajied LEAP which Is used
mblnttlon of syntax and

Items and seta of

An Item |s similar to a LISP atom,
during execution from a pool of
Items may be stored In variables (
ejetrents of lists, or be assoc
(assf^'atlons) within the .ssoclatlve store.

terns may be declared or obtained
terns by using the function NEW.
temvars)» be members of sets» b«
ated together to form triples

A set is
Inserted
variables
assigned
form»

an unordered oollection of distinct Items» Items .may be
Into set variables by "PUT" statements and removed from set
by "REMOVE" statements. Set exprasslons may also be

to set variables. The slmblest set exoresslon Is of the

(iteml» Item2» Item3 i •»)

whlch represents the set consisting of the denoted Items, More
oomplieated set expressions Involving set functions» „sft union,
subtraction and Intersection art also orovlded. Sets are stored In a
canonical Internal form which allowj us to carry out euch operations
as intersection» union and oomoaetsoh In a time proportional to the
lengths of the sets Involved.

Sets are deficient In some applications» though, beeausi they are
Unordered. Thus we could not easily try different alternatives In
order of their expected utility. To remedy thfs» as well.as provide a
mechanism for creation of parameter lists to Interpretive |y called
Procedures (see PROCEDURE VARIABLES below), SAIL now contains a data-
type caned "list", A list Is simply an ordered seouence of Items, An
Item may appear more than once within a list, Ll|t .ogtrtttena
include Inserting and removing specific Items from a list variable by
indexed PUT and REMOVE statements. List variables may also be
assigned list expressions» the simplest of which Is of the forml

Ulteml» Item2» ItemS %,,})

whtch represents the explicit seouence of denoted items» Other
expressions Include list functions» oo icatenation, and subllsts.

ther list

Triples are ordered three tuples of Items»
considered Items and occur In subsequent
to the associative store by executing MAKE statements.

and. may
associations.

themselves be
Tht»y are added
For examolei

MAKE use • planl = tasKU

the
s The .hr» It.« ccoon.n.. of " »"^i:*1^'.*!:^^".»«.!^!^

^rsr^^j.rjrr^^toj^.^.iss'"^ rt.t.^nts ^...
ERASE us» • Dl«nl = ANYl

variables« for eya^olei

DATJM(lt) • 51

»oul« cauae the d.tu" ef the It.» "It" to be repl.eed with "5".

S»It bbntaln. .001,1 |.-tl".J.«9'",iit>D|r.lron',lr?. '"*• oHi?" .'s
L

strlns aubatltutTon .nd "ndt on.l cojol l.tion^A .^^ ^^ tht
o

s;r::r4:fU5:0?hrth: ^^."lii^r. Lid ^p

-i-r^r: Ä/'tb's-.rc.r.nrs^^riu??.^.. M
t
atate',ient

ASSicN<yyy»9(xxx))

of baz.
e

a(It) - 51

PROCEDURE VARIABLES

3tatem9nts of the form

ASSlGNKIte* 8XDr.3slon>,Procedure soeolf I cat t on>)

<oroe.dur. »o.cinojtlon^n.^ro^

For Instanc«!

ASSlGNJxxx.baz)

■

would caus« yyy to b« m«d« Into • orootdur« lt»in containing the same
tn^ormatlon as ^hat 'n xxx,

In addition to dynamically aoeolfylng what procedure to execute» on?
would a|8o like a convenient way to dynamically scieolfy an argument
list for a orooeduM call. This ftolllty Is Dpovlded by the APPLY
meonanlsmi

APPLY(<Drocedure soecl f loatlon>i<argufnant llst>)

where <argu(n«nt list > Is any SAIL list and may be omitted If tha
Brocedur« has no oapametepsi For examole,

APPLYtfoo)
AppLY(a(xxx),jlstl)
APPLY(9UPPLY(yyy)>'<<x»y»'5>>t

APPLY uses the Items In the argument llsti together with the
environment Information from the procedure Item (or from the current
env| ronrrenti If the procedure |s named explicitly) to „make the
appropriate procedure call. If the called procedure oroduoes a
value» that value w]|j be returned as the value of APPLY.

Procedure Items permit a great deal of flexibility. For Instance,
the user can say things like

FORCACH x | xfactlons A useexifastentng do
BEGIN
APPLY(9<k)l<(boardi(board2n)l
IF togath«r(boardl,boa*d2) THEN GO TO den«|t)
END»

donsltt

This would search the aset "actions",for any .ppoeedures wblch.have
been asserted to be useful for fastening things together until either
the list Is exhausted o? the task Is successfully completed.

MULTIPLE PROCESSES

The control structure of SAIL Wki originally very .much like that of
Algol 60 •• that Is to say blosk structured and procedure oriented.
Although this structure Is adeouate for many problems, there are some
eases In which It Is uncomfortably restrictive. In hand-eye
applications, for Instance, there are freouent|y modulps of code
which are more or less mutually Independent but that wish to call on
each other for various services. Similarly* one may wish to
Investigate severs I.DOSStbIe strategies tt onoii with the results of
one computation perhaps Influencing the course of others', In such

casesi
as co
Droc

8d
deal re
80 ' Lit i
Invo I v
Interp
Orohlb
faclll
to ired
excess
us^rs
the öl
fa^l I i
wh'c^

it is
-routIn
lire ca
d fad I
on has
ed In
rocess
Itl vejy
ties wa
I um si
I ve ov
of the
ock str
ar to
data Is

The I
desc r
a DrO
Its 0
the D

mgke
fa I nt
ca' I«
space
varla
DpOc«
enter
stat 1
Its
be I on

mo |emgnt
Ibed by
cess Is
wn pun t
rocess t
up«I eve

a ' ned fo
d as an
for ^ n

o les In
dure Is
ed, It
c chain
lexical
ging to

much more natural to thlnK of (and write) th
es or Independent procasaes rather than
Ms, To some extent» message procedures p
itlesi with each Job acting as a separate prp

some rather severe drawbacks, since th
switching control from process to prooe

communication la so high that close Interact
expansive, One of our goals In Providing

s to make possible the close cooperation of
zed processes within a «lng|e Job without
erhead either on old-styje procedural Prog
shiny new features, In doing this» we wanted
uctur8 rules of Algol» since thes« rules ar
programmers and provide a useful means of
to be shared,

90m^haJyf?Ä8i67äS
on which has

me stack and which thus does not have to r«
hat Invoked It can continue, SAIL orocedur
I references via a "static" (lexical nes
r that ourpose In the stack, when a orocedur

Independent processi a "orocess" routine
ew stack, It then sets up aooroortate proc
the new stack ar«a and In the "parent". F
Invoked using the new stack, when this p

will set up Its static link by looking back
of the calling process until it finds an ac
parent. Thus» different processes will

their common ancestors,

ese mod
_a9 ne
rov I ded
oess,
e over
as and
]on bee
new con
many s

Tmposln
rams o

to r«
a genar
determl

uj.es
sted
the

This
head

In
omeq
trOl
mal I
g an
r on
tain
al ly
nlng

Stion. we haY9 chosen .somewhat
rganick i Cleary C8J for the Bu

essentially a procedure actlvatl
! Bf
bfte

turn
as n
ting
e Is
fir

ass
Inal
roce

al
tlva
sha

injam
n SAIL,
n gI van
before

ormal|y
) chain

to be
st gets
oontro I
|y» the
dure I s
ong the
t i on of
re data

Manv of the applications which we have considered do not permit us to
oredlct Just how many subProcesses a orocess might wish to spawn or
reaulr» that several processes be Instantiated using the same
srocedure on different data, Therefore, we have chosen to "name-
Drocesses by assigning them to LEAP Items, rather than by usina
Procedure na^es or some special data tyoa called "process", This
approach has the added advantage of allowing comolex structures of
sroeösses to be bul|t uc using the mechanisms of LEAP, New orooesses
irs created by statements of the form;

SPROUTK I fm express I on>, <p rocedur e ca I l>» <ODt I ons>)

where the Item specified by <ltem expressIon> Is to be used as tne
orocess name, the <orocedUre ca||> te||s what this process is to do.
and <oDtlons> Is ap integer which Is used to soecify ha- certain
orocess attributes are to be set UP, (I* the <ootlons> oara^ater Is
omitted or only partially speolfied, SAIL wll| provide default

,

:

.

L-

.

,

•

oS-nJli'a «SuiSoT,?!; • Dpooedu^ to nttl two board, to«ther mtflht

J
ITEM ol,D2ip3j
I
I

SPROUT(ol,grab(htndl,h»iTi(ner))i
SPROUT(p2,grab(hand2,naf|>)|
SPROUKpS, look«t(tvl,boardi))t

j

jOiN((pl,o2to3>)l
oound(hamme;#na| I,boards)»

look.tltn.bo.rd» would b! •»eutH .. !^».Br"*;, ""^ •nd

JOIN(<set>)

•poroprlata option» Thi «PonnJ.J ■g8,r 8P,c'fi»s OthffWli« by

Unless some other option is aoealflld r«! i! ♦ ^•^dy it«tus,

• SPROUT<w,nd,f»f5mm!?;:is8fi8oi)if(!Ai4,.RUN.„E)

IB

The current process would oontlnue^ to pun, and wanderer would
lansuish In Peady status until evePythlng of hlshe. Dflollty had been
suspended, r r r "

Processes may be susoended Or terminated via

SUSPENDUprocess Item exDtes8lon>)

and

TERMINATE(<Droces3 Item expressions

#Mic5rS0 J^st w[]at 9ne m,flht •xotct, Similarly, SAIL ppovTdes system functions for chanfllng a Process's priority or quantum, sy^m

SisdME^SSttpuct? 'nteractlc,ns «"-e facilitated by the use of the

x*RESUME(<pPecess Item expresslon>,<return va|ue>,<oDtlons>)

where <optlon8> Is aflaln optional, The usual effect of RESUME Is to
cause the currently running process to be suspended and the orocess
specified oy <process Item exoresslpn> to become running. If the
Process being resumed had suspended Itself by means of a resume
statement, then It w|l| receive <return va|ue> as the value of the
RESUME, For Instance,

PROCEDURE tooj.gettirdTEMVAR tooktypen
BEGIN
ITEMVAR tooll
FOREACH tool I tool t toolbox ^ type*tool5tool* type DO 1

RESUME(CALLER(THIS.PROCESS),tooi)>
END» '

t

SPROUT(tg*NEW,too I,getter(screwdriver),SUSPEND HIM)
DO sd'-RESUME<tg,NlC) UNTIL f I ts(sd, sCreWi) i

TERMINATEftg)?
;

H

n

r

n ths case, the tool getter process "tq" will be initialized and
Immediately suspended. Then, the RESUMECtg,NIC) will waKe It uo to
Mno one screwdriver, which will be assigned to itemvar "sd" by the
RESUME{CALLER<THIS.PROCESS),tooi). (THIS.PROCESS and
CALLERJ<orocld>) are system supplied routines that returr the crocess
Iteir.s fcr the currently running process and for the orocess that last
awakened process <Orocld>i respectively,) Later on, we wl|] discuss a
somewhat cleaner solution, using matching procedures, to the problem

0

i

SS
he

us«a for this Illustration, We w!|| also show how tha Int^roroc«
;0 EI^J1:: !as,,ft^!of the '•"^•ä* «JJ «»X.d to "hiss ;ot oroblofr 0f what t0 d0 if tool.oattap run8 put 0f tools.
PQREACh STATEMENTS

rSSEA^J.tL;^ ?frn^?;2h,nfl th* lZ*P «•■boUtlva store Is the
o? iJSmv!!!* I!".*' A r?REtCH it,ltomfnt consists of a "binding list"
C«n.l5r I!: J" "assodatlva contsxt" and a statement to be Iterated.
Consider the following example.

FOREACH SjDioic I oarent • c S o /N parent e p = aD Do
,, MAKE grandparent • c i aoJ

,,,"„th|?l,!
x*nlp,e.th? ^"dlno-llet consists of the ttemvars "go"! V.

- ; The associative context consists of two "elements", "oarent • c

MASE's^eJr6^ # D 5 9P"• ^ Statement t0 b9 iterat9d ,8 ***

Initially all three Itemvars are "unbound«. That Ta. thev »,*
ir^nV'Vi^:6 n-0 H:m Vi,ü,! s,noi "p,, i?ä :cI •*• u;bo5nd8r is; ejen-ent parent • c = D" represents an associative search, The LEAP
Ihl! P

a
r!!e>J! '"^r^ted to look for triples containing "D«rent" as

he ^le*: ^S' 0? f,"d,"fl such a triple, the Interprete' assta^
the oDject and value components to "c" and "p" rasbeotlvely. Me
U^MYM«

th; n,;t|»i«
m«ht "parent a P = OP", In this element there

! ?nlthrJiU3fOUn?.,t8ffl!ap' 9?,,'M'3H 's not unbound even though It
I'.ir ^"."'"^"Sl'St because It was bound by a receding element,
t.! t^ K

SH?ade/0p tr]D|e3 w,?h parent" as their attribute and t^
uir CiiSi «IC9 f0r ,V; " the,r obj9Ct' If »uch • ^^le" Is found.
i««utli cj;;o"ent Is bound to "go" and the MAKE statement li
executed. After execution of the MAKE statement, the LEAP
1^1'°^: W,,| "back UD" •nd amm*t t0 f'"d another binding ?o?
"go« and then execute the MAKE statement again. When the Tnte preter
falls to find another binding, It bacKs up to the preceding element
ana trVs to find other bindings for "p" and "c", Finally when all
triples matching the pattern of the f i rst elftnint hivi been tr lid
the execution of the FOREACH statement Is complete,

i^0,2emhi!!;M«0REJCH «le79nts consisted of either triple searches, sev menrbersh p, or boolean expressions not deoendant on unbound

bfn! a'n^nbou^ Ä:."^98 ™* "* *"**•""* **" allowed to

o^ce^e/«^^
which may have zero or more BINDINGwrfttin as ^"T ftemv!*! Is
I?!"" !hDt^amBt!PS, .Thes0 oarameters are not necessarily bound at the
tirre the procedure is culled, if the Procedure cannot Mnd bind ngs

12

for I
Interp
eorUex
oarage
SPROUT
f orir.s
TRUE a
oroces
Hbaci<u
of t^e
the Pr
OrOced
genera
match I
«pcear

ts u
reter
t of
ters
ed as
of RE
nd FA
s to
P", I
ppoc

ocedu
ure
ting
ng or
ea In

nöound B!
to back u
the FQREA
will be
a corout

SUME wh{c
LSE resoeo
be TERMIN
t ts mere I
edupe's |o
re execute
may contl
new blnd'n
ooedurea a
varied fo

NDING oapa
p to the o
CH. If I
returned!

In« oroce
h return o
tlvely, FA
ATEd, When
y RESUMEd.
ca| vartab
d the ore
nue from
os for Its
re similar
rms In oth

metersi It
revlous ele
t SUCCEEDS,
Tbe tnatoh

ss. SUCCEED
ontrol to
IL also cau
tbe match
Thus» the
|esi stack,
vtous succe
tbe point
unbound pa
to the IPL

er problem-

FAIL
ment w

bind
Ins? p
and

the ca
ses th
Ing gr
ent|re
etc, >

s^f ui
at,

ramete
-V "ge
sol vln

si ea
Ithln
Ings '
rocsdu
FAIL
I ler w
s mat
ooedur
envlr
Is th

return
whloh
rs, In
nerato
g lang

using
the as

th
Is
as
t

or
re
are
Ith
ohlng
e Is
onment
e same
, The
It I
many

rs" w
uages.

the LEAP
soelatlvs
e unbound
actual|y
sentlaily
he values
procedure
catledby
In tepms
as when

matching
eft off,
pesoeets

hloh have

To aid In "the binding ooeratlons we have provided predicates to
determine If a specific parameter Is unbound for this call of the
Procedure, We also have Introduce a new form of the FQREACH statement
which conditionally adds Itemvars to Its binding list, Consider the
the following example of the new formi

MATCHING PROCEDURE
BEGIN FQREACH ?too

ENDj
FAILI

tool.getter(? ITEMVAR tool, toolltyoe)!
, rtool.type I tool * tool.oox A
type»tocl=too|.type DO SUCCEED)

0

The binding list of the FOREACH would contain "tool" ooly If
were unbound, Similarly It would contain ,Ttoo l.tyoe" If "too
were unbrund. The action of the matching procedure Is to find
If the tool Is unknown but the type Is knowni find the tvoe
tpoj Is known but the tvoe Is not; verify that the tool^ls
reoulreo type If both are Known) or search through the too

"tool"
.tyoe"
a too l
If the
of the

box and
return too I,too I.tyoe oalrs If
actual semantics Is determined
are bound,

neither too
by which, if

nor type
either, of

s known, The
the oarameters

Unfortunately In general, matching procedures with more than a stncile
Potentially unbound parameter are not so easy to code, The user may
have to provide uo to 2tN different code sequences to handle the
various combinations of N BINDING Itemvars,

To Illustrate one class of uses of matching oroocciures let us
consider the followinc problem, We are given a set of cube shaped
blocks of varying sizes and are reauested to oick a subset of the
blocks such that when stacked they will form a tower ef a given
he's^t. Assume that we w(i| represent a cube by an Item whose datum
Is the height of the cube, We may easily solve this oroblem by using
a recursive procedure "ffndl",

it

13

RECURSIVE BOOLEAN PROCEDURE flndl <SET bstti INTEGER dlHj
REFERENCE SET ana);

BEGIN INTEGER ITEMVAR newb)
FOREACH newb I newb 6 baet A (Jtnewb S J ^ .J0 . . ., ann,

IF O(newb) » dlff) v f I ndKbsat-Cnawb) ,dl f f-d(newb) iBns)
THEN BEGIN PUT newb IN answeriRETURN(TRüE) ENDI

RETURN<FALSE)I
END;

for. the flrtt towor. "flndl" will always raturn tjj .|mt oi« even
though It Is possible to conatruet the "oond towar onU If ^
different subset of the blocks war» chosen for the *\f*l ****['J0'
exairDie. If the set of bloeKl conslattd of »If«» 1» 4' »"5 5 a"d *•
!erl to construct towers of halahts 5 and 4. «Ilndl« would construct
JM first towar ualnfl blocks 1 and 4 and thus b» unable to construct

th« second tower,

Now let us see how we wpuld use matching orocaduris to ov»''0°;e ™'?
ojoblem. Let us write the matchlno orocedure to solve a slnflle tower
Problem [13.

MATCHING PROCEDURE f]nd2 (SET baetl INTEGER helflht;
? SET ITEMVAR ana)»

B RECURSIVE PROCEDURE aux (SET si» INTEGER dlff);
BEGIN INTEGER ITEMVAR neWhl

FOREACH nawb I nsWb * si A (8(newb^ S d'ff) DO
BEGIN PUT newb IN e{ftns);

IF (Mnewb>. dlff> THEN SUCCEED
ELSE tux(sl-<nowb)idl f f-9(newbn I

REMOVE newb FROM 9(ans>J
ENOl

END!

ans - NEW(())I COMMENT new Item. The empty set Is datum!
aux(bset»he1ght)I
FAIL)

END!

To call the matching procedure we would simply have a FOREACH
statement!

14

FOREACH ans f]nd2(b|ooKsetfhelght«ens) DO
crInts«t(»<ftn8))i

This is clearly eaujvalent to the solution given above for "Mndl'1,
However now consider the two tower ces«JJ

FOREACH ansl,ans2 I ftnd2(b|ocKs8t,helghtl,ansl)Ä
fInd2(block set-»(anslliheight2,«ns2) DO

or int3etsOUnsl),9(an32))|

(j

find a solution If any exlstsi
to the first tower»

This wi||
so Iut i on

the second orobI ami
first tower and then

because Iff after finding a
It js IniDosslijIe to find a solution to

we backup and find a different solution to the
try the second again.

An Interesting distinction between the proorame for "flndl" and
"finds" nay be found. Notice that "flndl" only returns tc its caller
after "unwinding" the recursion, thus allowing the answer
constructed as the recursion Is being "unwound" within a
call. With "flnd2"# howeveri the orooedure tnpy "return"
while It is still deeoly nested In recursion and thus the

set to be
successfuI
or succeed
answer set

must be constructed before the next recursive call of "aux" Is made.

n

Me envision that matching procedures w
s aenerators of m

n the coding of eomolex associative contexts.
relatlorsi serve
sirrp ly aid

| be used to, simulate n-arv
oves or strategies, as well as r

INTERPROCESS COMMUNICATION

lR. como ere a
a irecha

f low of
into s
I nforma
aes I gnI
make it
genera!
hanoIefl

fairly !
jtlce" not 11

reDres e

I icate
re man
nl sn b
contr

everaI
tlon
ng I nt
easy
type

we
genera

» or
nted b

syste
COOPS

wh jch
In o
basi

assoc la
erproce
for the
and to
have

I messa
messag

y an i t

ms TSU
rating
an o

ther P
c gro
ted w|
ss com
user
def in

chosen
ge pro
e, an
em, Wi

ch as
Proc

ccurr
rooes
UPSf
th e
mun I c
to dl
e for

an
oesso
d ee
th ea

the
essas
ence
ses.

wit
aoh o
at ion
sting
h ims

"even
r. A
ch t
ch su

Stanf
ores«

In one
Such

h per
ccurre
fad I

ut sh a
elf Ju
t» me
ny I te
ype o
ch eve

ord Hand
nt» one
process

occurren
haos s
nc« of
tties fo
mong hap
st how
chanlsm
m may be
f event
nt type,

would
can

ces f
ome
a gi
r SAI
oenln
each
which
used
In

SAIL

Mi
reaue
dlsti
ven
L we
gs of
type

i s
as
a p
asso

sm« w
to

uence
nt j'y
ngula
type.
wante
the

Is t
real

jn "e
rogra
c iat«

here
have
the

fal I
hing

In
d to
same
0 be
1 v a
vent
m I s
s:

;

:

1. A "rotlce ausue" of items which have been "caused" for this even*
tyoe.

()

2, A "^alt gueue" of crocesses which are waiting for an event of this
type.

3, Prcce'.'jres for manipulating the aueues.

15

.

The two essential actions associated with any event type are

CAUSEUevent tyDe>»<nothe It^ir. >i<ODt1ons>)
and

iNTERROGATEUevent tyDe>i <0Dt i ons>)

wherfli as elsewhere, <o&tlons> may be left oJt If the default case Is
desired,

The statement

CAUSEUyoel.nto)

would cause SAIL to look at the wait oueue fop tyoel. If. the oueue
Is empty, then "ntc" would be out Into typel's notice queue.
Otherwise» a process would be removed from the wait oueue and
reactivated, with "ntc" as the awaited item,

If a process executes the statement

ltmv*INTERROGATE(typel>

then t^e first Item in the notice oueue for tyoel would be removed
frotr the queue and ass'aned to Itemvap Itmv, if the queue Is empty,
then itrrv would be set to the special Item NIC. If a process wants
to wait for an event of a given type. It may do so. as In

Itmv-INTERRQGATECtypel.WAlT)

In tMs case« if the notice queue Is empty» than the process will be
suspended and put onto the Walt queue for typel,

Simj I - |y,

Itmv-INTERROGATE(typel,RETAIN)

causes the event notice to be retained In the notice queue for tyoel.

This event mechanism should prqv« useful In problBm solving
applications In which processes are sp-outsd to consider different
actions, An "or" node in a goal tree, for example, might be
represented by

J
:
SPROUT(pl,nal|(sucev^,boards))»
SPROUT(P2,g|ueCsucevt,boards)>I

16

SPRuUT<D3,Süpew(9Ucevtiboards))?
wInne.-INTERROGA,,£<suC«vtiWAlT)J
FOREACH D | Bt{Dl*B«#D3) A o^wlnner 00 TERMINA'ECD);
J

Whep a branch djacovar? that It has succeedadi It can axeout« a
atate^6'^ I Ike

CA USE(sueevt.THIS.PROCESS))

JU M announce^ sue
less successful brothers.
whlch ^ouM announce success and cause Its oarent to terminate Its

fuf

Events ßlve us a means by which some discovery ipade by one brocass
ca" be made to "unstick" some other orocess which has ootten Into
trouble, Lets consider our tool getter again,

PROCEDURE tool gettertlTEMVAR tool.tyoe))
BEGIN
ITEMyAR tool!
FOREACH tool I tool^toolbox A typeetoo l=tooI type 00

RESUME(CALLER(THIS PROCESS),too|)J
DO too|«-INTERROGATE(töol_found»WAlT)

UNTIL tyD3etoo(=too|-tyDej
RESUME(CALLER(THlS.PR0CESS)#tOo!)J
END»

If the FOREACH statement falis to find a tool, of the correct tyoe,
then tool.getter wlfi be suspended until some process causes an event
of tvpe töol.found» using the an Item representing tool fs the event
notice, Suppose that our oroeeis "wanderer" has finally gotten a
chance to run (everything of higher Priority being stuck) and that It
doesi In fact» stumble across a screwdriver» which It knows to be a
k|na of tool, It m]ght then do something Itke

^AKE typeethlnaSscrewdrIver)
PUT thing IN tool.box;
CAUSE(too I.found»thing»TELL.EVERYONE+DONTSAVE)»
:

This ^ould cause every orocess waiting on the event "too I found" to
be awakened, (If no orocess Is waiting» the notice will not be saved
on the notice aucue.) This would "^ake UP whomever calied tool.gettar,
whlch would then see]f It can use the "thing".

FreaVertly» one w]shes to..,ask about .one of feveral. oossj^le
conöTtions! In some cases th s oouTd be done by a simple loop whiöh
INTE

R
ROGATES each eyent type In a list. unf ortunt'te ly» *' one wishes

17

i

r.

to wait for «n oocurrence within a given s»t of ev«ntsf this doesn't
work vBry welli ailncQ an attemot to wait for one event type will keep
the other tyoes from being seen, Thereforei SAIL allows a orocess to
ask about a set or list of event tyoes directly» as In

ItmvMNTERROCATEUv.tyDe.l I 81WAIT+RETAIN)

UehÄ«l8« iSeufiJ^S^rM^^^ir^fflbS^USUa^ai; .fiUJ
any of wait queue entries Is secvfoed (All wait aueue entries for
this reauest wljI be deleteOe) if It Is necessary to know Just which
tyoe was resoonslble for a given notlcei the ootlon SAY_WHICH may be
used« suopose the st^temvint

Itmv-INTERROGATE^ev.tyoe.lIs.H*IT+SAY.WHICH>

returns Item "notlc". which was caused as an event of type
cata8tpOnhe, a5 Its value. Then the association
EVENT.TYPE»notlc=catastrODhe will be made by the system,

Thus» one way to croOram an "and" node within orocess "foo" might be
sowethino MKe

SPROUTtol.fetch(hammer•hand!»sucevti'a 1|evt)>J
SPROUT(D2,fetch(naI I.hand2isucavt»fa Ilevt))!

SPR0UT(on,lookat(cvliboard6isuoevt»fa|ievt)>J
FOR I - 1 STEP 1 untlI n DÜ

BEGIN
D* INTERROGATED (fa I levt» suoevt>)»WAIT) I
IT EVENT'TYPE^pHfajlevt THEN

BEGIN
MAKE failure ^auseefooSßl
FOREACH o I o € ((Dl»p2,.,.»Dn>> DO TERMlNATE(o)I
CAUSE(foo5_falIure.event.foo)I
SUSPEND(foo>»
END}

ENDI
CAUSE(foos_success_event»foo)»

Were» It Is assumed that each process Is to take responsibility for
making "|lfe or death" decisions reauardlng any subprocesses. As
soon as one jf the pi reports failure» fee will terminate all Its
"children" (whose aDDO'(nted +asks hayO become polntles8) rJoor^ Its
own failure, and suspend Itself, If all the pi report success» then
foo w|l| do IIkewjse.

Eve
upd

nts may be used together with matching proceduree to do deferred
atlng, as Is shown by the following example, A matching procedure

18

h« then becomes a suSDscti

SET badauya» LIST 3U?Dec*i0..1P1.Mr trrMVAR *n MATCHING PROCEDURE I Inked(BINDlNG 1TEMVAR xH
BEGIN

PROCEDURE UPDAJEJ
BEGIN INTEGER ITEKVAR y.fl

BEGIN f«.lNTERROCATEU)nkedot<»WAIT)l
PUT >- IN badguVs»
8(f)-a(f>-2J
FCREACH y I ANY * x = y DO

BEGi? ÜJJ^^TSEN'PüT y IN susoect AFTER -I

END}
ENOI

ENOI

z*NEW* sfioUT(2iUDdate)l
FOREACH x I x f ausoact DO
SUCCEED»

TERMINATE(Z)J
FAIL!

ENDi

i

•

0

0

A lnformer»D«rson3fInk DO
BEGIN CAUSE(|]nkedok#flnk)l

END,'

19

Th t s s Itrp |e
Drocedupes
technlauB it
s I tu>t'onsi

A|thf

AxamoI 8
op the

do^s of course not ra«||y
ftyent machanlsn to cause

reaulre either matching
t . the uodatlng; but the

lustrttes should be aulta valuable In more eoPiolloated

.lOuSh
apo Meat

the

they are not
for a given
that eventi
every Possible
and Process erl
and INTERROGATE
one Provided by

EC?)(iid92 2vf!Dt-DC,Tit,v9s It« sufficient for moit-of the
5CI25 w? h!v*rS0"?,d?p,a' "•"• ••"* 80¥« caBei0For whTch auite right. For Inatancf, a process might want to wait
event onjy If no otber Process Is already waiting for
Instead of trying to provide a special option to cover
contingency, we have Instead provided a set of aueue
matlves with which ths user can write his own CAUSE
Procedures, To substitute his own procedure for the
SAIL» the user makes an association of the form

CAUSE_PROC»tyoei=new_cause.proC

or

lNTERROGATElPROC»typel=new. t-oroo

where typel Is the event
ProcPdUre Items bound to
will be run as "atomic"
without Interruption,
Process status requested
olace untlI aftei

type and new.cause,proc and new Int'oroc are
the substitute ororjedupes, These procedures
operatlonsi and wl|| be allowed to finish

In particular, any CAUSEs or changes In
by such a procedure will not actually take

. . Ir the Procedure exits, This "Interrupt level" turns
out to be quite useful and permits one to Write Intei
that look at a notice of some event, do whft they can,
either Just return or else cause an event that wf
stronger condition,

rrupt handlers
and then

Qger some III trl

20

c

CONCLUSION

Each of the features daaorlbtd In this oao^r, was Intendad to solve
oartlcuiar DroQrammlnfl problams. W| have not yftt hid^suf f loiant
Dractloal exoerlenoe with tht new avstem fe say with certainty that
they are the the right ones. T*ma Is a gnat deal of work on these
Droblema In several laboratories and now Issues are being raised
fr^auently. We do feeli however, that the basic solutions suggested
here w||| prove useful and that they do slenlfloant|y extend the
caoabllltles of Mgd-llke languages.

ACKNOWLEDGEMENT

While the work described In this paper was being done# there has also
been a significant effort at the Stanford A. I(Lab to produce a new
LI3P system (LISP 70} which also Includes provisions for fflultlele
Processes, backtracking, and other similar features, we would like
to thaifk the authors of this effort, Horace Enea, Larry. Te;ler, and
Da^ld Strlth for several Interesting conversations abput thelj- system.
Although the approach they have taken Is somewhat different from
ours» thes« talks ofovlded us with several useful Inslohts.

21

'

REFERENCES

Ci3 Anderson, B,, "Progrommlng Ltnoutgts for Artificial Intelllssneei
the role of non-<le*«rmlnlsm," School of Artificial
Intel I Iseneei Unlv, of Edinburgh, ExoerTtnental
Programming Reports No.25,

C23 Blrtwlstle, d "Notes on the SIMULA Languagei"
Norwegian Computing centre Publication S-7, AOrll 1969,

"' 0,rK8a?'o^J*.il Wl 8«F?ri,:S5"l5 Jun. 1972.
C43 Zeldman, J, A,, and Rovner» Pt 0.« "An ALCQU-Based Associative

Language," C.ACM 12i8 (August 1969), oo 439-449,

C53 Feldman, J, A,i and Sproull* Ri r,#"Sy8tefn Support For the
Stanford Hand-eye systemi" proo. Second IJCAI,
Sect. 1971, pp 183-189,

C63 Hewitt. C. "Procedural Embedding of Knowledge In Plannen'*
Proc, Second IJCAI, September 1971, pp 167-182,

C73 WcOermotti 0, V., and Sussman, G. J.i^The CONNIVER Reference
Manual," MIT A, I. Memo 259, May |972,

C83 Oroanlck, E, I,, and Cieary, J. C "A Data Structure Model
of the B6700 Computer Astern," SI6PLAN Notices 6,2,
Pebruary 1971, pp 83 - 145,

C93 Swlneharti D, C., and Sproull, R, r,, "SAIL Manual," ,
Stanford Artificial Intelligence Laboratory Operating
Note No, 52,

22

K'

